Abstract

In transfer learning model, the source domain samples and target domain samples usually share the same class labels but have different distributions. In general, the existing transfer learning algorithms ignore the interclass differences and intraclass similarities across domains. To address these problems, this article proposes a transfer learning algorithm based on discriminative Fisher embedding and adaptive maximum mean discrepancy (AMMD) constraints, called discriminative Fisher embedding dictionary transfer learning (DFEDTL). First, combining the label information of source domain and part of target domain, we construct the discriminative Fisher embedding model to preserve the interclass differences and intraclass similarities of training samples in transfer learning. Second, an AMMD model is constructed using atoms and profiles, which can adaptively minimize the distribution differences between source domain and target domain. The proposed method has three advantages: 1) using the Fisher criterion, we construct the discriminative Fisher embedding model between source domain samples and target domain samples, which encourages the samples from the same class to have similar coding coefficients; 2) instead of using the training samples to design the maximum mean discrepancy (MMD), we construct the AMMD model based on the relationship between the dictionary atoms and profiles; thus, the source domain samples can be adaptive to the target domain samples; and 3) the dictionary learning is based on the combination of source and target samples which can avoid the classification error caused by the difference among samples and reduce the tedious and expensive data annotation. A large number of experiments on five public image classification datasets show that the proposed method obtains better classification performance than some state-of-the-art dictionary and transfer learning methods. The code has been available at https://github.com/shilinrui/DFEDTL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call