Abstract
With the development of multimedia technology, fine-grained image retrieval has gradually become a new hot topic in computer vision, while its accuracy and speed are limited due to the low discriminative high-dimensional real-valued embedding. To solve this problem, we propose an end-to-end framework named DFMH (Discriminative Feature Mining Hashing), which consists of the DFEM (Discriminative Feature Extracting Module) and SHCM (Semantic Hash Coding Module). Specifically, DFEM explores more discriminative local regions by attention drop and obtains finer local feature expression by attention re-sample. SHCM generates high-quality hash codes by combining the quantization loss and bit balance loss. Validated by extensive experiments and ablation studies, our method consistently outperforms both the state-of-the-art generic retrieval methods as well as fine-grained retrieval methods on three datasets, including CUB Birds, Stanford Dogs and Stanford Cars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.