Abstract
We propose a new method for fabric defect detection by in- corporating the design of an adaptive wavelet-based feature extractor with the design of an Euclidean distance-based detector. The proposed method characterizes the fabric image with multiscale wavelet features by using undecimated discrete wavelet transforms. Each nonoverlapping window of the fabric image is then detected as defect or nondefect with an Euclidean distance-based detector. Instead of using the standard wavelet bases, an adaptive wavelet basis is designed for the detection of fabric defects. Minimization of the detection error is achieved by incor- porating the design of the adaptive wavelet with the design of the detec- tor parameters using a discriminative feature extraction (DFE) training method. The proposed method has been evaluated on 480 defect samples from five types of defects, and 480 nondefect samples, where a 97.5% detection rate and 0.63% false alarm rate were achieved. The evaluations were also carried out on unknown types of defects, where a 93.3% detection rate and 3.97% false alarm rate were achieved in the detection of 180 defect samples and 780 nondefect samples. © 2002
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.