Abstract
Multi-view clustering is a widely-used technique that seeks to categorize data obtained from various sources. As a representative method, multi-view fuzzy clustering has attracted growing attention. However, it becomes quite challenging when feature-redundant and incomplete data is presented. Despite the existing studies on dimension reduction and imputation methods, several issues remain unresolved. There is an excessive concern on the imputation, without considering that interpolation methods lead to accuracy degradation. Moreover, most of the methods usually process these two steps separately, resulting in inefficiency. To address these issues, we propose a discriminative embedded incomplete multi-view fuzzy c-means clustering method. We construct the indicator matrix to guide the learning of the common membership function, and design the projection matrix to construct embedding spaces. Subsequently, we develop an iterative optimization algorithm that solves the resultant problem. We demonstrate that the projection matrix can be achieved through the utilization of eigenvalue decomposition. Through extensive experimental studies on various benchmark datasets, the proposed method demonstrates the effectiveness and efficiency compared to the existing state-of-the-art clustering algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.