Abstract
In this study, we address the problem of similar local motions that create confusion within different group activities. To reduce the influences of motions, we propose a discriminative group context feature (DGCF) that considers prominent sub-events. Moreover, we adopt a gated recurrent unit (GRU) model that can learn temporal changes in a sequence. In real-world scenarios, people perform activities with different temporal lengths. The GRU model handles an arbitrary length of data for training with nonlinear hidden units in the network. However, when we use a deep neural network model, data scarcity causes overfitting problems. Data augmentation methods for images are ineffective for trajectory data augmentation. Thus, we also propose a method for trajectory augmentation. We evaluate the effectiveness of the proposed method on three datasets. In our experiments on each dataset, we show that the proposed method outperforms the competing state-of-the-art methods for group activity recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.