Abstract

This research aims to distinguish the reef environment from the non-reef environment. The Oligocene-Miocene-succussion in western Iraq was selected as a case study, represented by the reefal limestone facies of the Anah Formation (Late Oligocene) deposited in reef-back reef environments, dolomitic limestone of the Euphrates Formation (Early Miocene) deposited in open sea environments, and gypsiferous marly limestone of the Fatha Formation (Middle Miocene) deposited in a lagoonal environment. The content of the rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Ho, Tm, Yb, Lu, and Y) in reef facies appear to be much lower than of those in the non-reef facies. The open sea facies have a low content of REEs due to being a transitional phase. The facies investigated have ƩREEs lower than the PAAS. The lagoonal facies shows an average ƩREEs higher than the Global Standard of Carbonate Rocks (GSCR), whereas reefal and open sea facies contain lower. The Y/Ho, Y/Dy, and Er/Nd were used as distinctive indicators of facies diagnosis; reefal facies have a high value of Y/Ho, Y/Dy, and Er/Nd as compared to PAAS are higher than1. In contrast, non-reef facies (lagoonal) have a lower value of Y/Ho, and Y/Dy as compared to PAAS is lower than 1, but Er/Nd is higher than 1. While in open sea facies the Y/Ho and Y/Dy have moderate values as compared to PAAS are close to 1, but a high value of Er/Nd as compared to PAAS higher than 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.