Abstract
The flavor and aroma quality of green tea are closely related to the harvest season. The aim of this study was to identify the harvesting season of green tea by alcohol/salt-based aqueous two-phase system (ATPS) combined with chemometric analysis. In this paper, the single factor experiments (SFM) and response surface methodology (RSM) optimization were designed to investigate and select the optimal ATPS. A total of 180 green tea samples were studied in this work, including 86 spring tea and 94 autumn tea. After the active components in green tea samples were extracted by the optimal ethanol/(NH4)2SO4 ATPS, the qualitative and quantitative analysis was realized based on HPLC-DAD combined with alternating trilinear decomposition-assisted multivariate curve resolution (ATLD-MCR) algorithm, with satisfactory spiked recoveries (86.00 %–112.45 %). The quantitative results obtained from ATLD-MCR model were subjected to chemometric pattern recognition analysis. The constructed partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) models showed better results than the principal component analysis (PCA) model, and the R2Xcum values (>0.835) and R2Ycum (>0.937) were close to 1, the Q2cum values were greater than 0.75 (>0.933), and the differences between R2Ycum and Q2cum were not larger than 0.2, indicating excellent cross-validation prediction performance of the models. Furthermore, the classification results based on the hierarchical clustering analysis (HCA) were consistent with the PCA, PLS-DA and OPLS-DA results, establishing a good correlation between tea active components and the harvesting seasons of green tea. Overall, the combination of ATPS and chemometric methods is accurate, sensitive, fast and reliable for the qualitative and quantitative determination of tea active components, providing guidance for the quality control of green tea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.