Abstract

In the decommissioning of the Fukushima Daiichi Nuclear Power Station, radiation dose calculations necessitate a 3D model of the workspace are performed to determine suitable measures for reducing exposure. However, the construction of a 3D model from a 3D point cloud is a costly endeavor. To separate the geometrical shape regions on 3D point cloud, we are developing a structure discrimination method using 3D and 2D deep learning to contribute to the advancement of 3D modeling automation technology. In this paper, we present a method for transferring and fusing labels to handle 2D prediction labels in 3D space. We propose an exhaustive label fusion method designed for plant facilities with intricate structures. Through evaluation on a mock-up plant dataset, we confirmed the method’s effective performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.