Abstract

Pesticide residues directly or indirectly threaten the health of humans and animals. We need a rapid and nondestructive method for the safety evaluation of fruits. In this study, the feasibility of visible/near-infrared (Vis/NIR) spectroscopy technology was explored for the discrimination of pesticide residue levels on the Hami melon surface. The one-dimensional convolutional neural network (1D-CNN) model was proposed for spectral data discrimination. We compared the effect of different convolutional architectures on the model performance, including single-depth, symmetric, and asymmetric multiscale convolution. The results showed that the 1D-CNN model could discriminate the presence or absence of pesticide residues with a high accuracy above 99.00%. The multiscale convolution could significantly improve the model accuracy while reducing the modeling time. In particular, the asymmetric convolution had a better comprehensive performance. For two-level discrimination, the accuracy of lambda-cyhalothrin and beta-cypermethrin was 93.68% and 95.79%, respectively. For three-level discrimination, the accuracy of lambda-cyhalothrin and beta-cypermethrin was 86.32% and 89.47%, respectively. For four-level discrimination, the accuracy of lambda-cyhalothrin and beta-cypermethrin was 87.37% and 93.68%, respectively, and the average modeling time was 3.5 s. This finding will encourage more relevant research to use multiscale 1D-CNN as a spectral analysis strategy for the detection of pesticide residues in fruits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call