Abstract

During high event rates, discrimination of neutron and gamma-ray pulses can be challenging because of pulse pileup. In this paper, we develop a novel approach to deal with this problem. In our method, the normalized cross correlation (NCC) is used to characterize the behavior of typical neutron and gamma-ray pulses. The gradient of the NCC curve is shown to provide distinct features that can be used to distinguish neutron from gamma-ray pulses. Principal component analysis (PCA) is employed to extract features from the NCC gradient curve. We have employed the standard PCA approach and a modified PCA version to obtain unique features. The modified PCA method first extracts 20 Kolmogorov-Smirnov points and then computes the principal components of these 20 coefficients. We have exercised the technique on both simulated (for different pileup delays) and measurement data from a CLYC detector (for varying event rates). The modified PCA approach shows more promising results than the standard PCA approach with better figure of merit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call