Abstract

Fluorescence recovery after photobleaching (FRAP) is an excellent tool to measure the chemical rate constants of fluorescently labeled proteins in living cells. Usually FRAP experiments are conducted with the protein concentrations being in a steady state, i.e., when the association and dissociation of the proteins are equilibrated. This is a strong limitation because situations in which rate constants change with time are of great scientific interest. In this study, we present an approach in which FRAP is used shortly after DNA damage introducing laser microirradiation, which results in the recruitment of the DNA clamp protein proliferating cell nuclear antigen (PCNA) to DNA lesions. We establish different kinetic models that are compatible with the observed PCNA recruitment data if FRAP is not used. By using FRAP at different time points during protein accumulation, we can not only exclude two out of three models, but we can also determine the rate constants with increased reliability. This study thus demonstrates the feasibility of using FRAP during protein recruitment and its application in the discrimination of possible kinetic models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.