Abstract

Possibilities of discriminating neutrons and γ rays in the AGATA γ -ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the G eant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and γ rays from the center of AGATA. Three different methods were developed and tested in order to find “fingerprints” of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1–5 MeV and 10 γ rays with energies between 150 and 1450 keV, the peak-to-background ratio at a γ -ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.