Abstract

We developed a simple, rapid, and label-free method to obtain the ratio of cells with a specific surface protein from heterogeneous cell populations, and applied it to estimate the cell differentiation states. The repulsive force of negative dielectrophoresis was used to form the first pattern of HL60 cells on a substrate immobilized with anti-CD13 or anti-CD11b antibody. Next, the patterned cells were converted to form the second pattern by switching the pattern of the electric field. The cells exhibiting a specific protein remained in the original position due to the immunorecognition event, while the unwanted cells that were not bound to the antibody on the substrates could be simply removed. The cell-binding efficiencies of substrates modified with anti-CD13 and anti-CD11b decreased and increased, respectively, with increasing duration of cell culture in medium containing differentiation-inducing agents, including all-trans retinoic acid. This is explained by the downregulation of CD13 and upregulation of CD11b throughout the differentiation process of HL60 cells. Furthermore, the assay was applied to investigate the effects of various differentiation-inducing agents. The total assay time required for discriminating the proteins expressed on the cell surface in each differentiation state was as short as 120 s. No fluorescence label is required for the proposed assay. The method could be useful to estimate the cell differentiation and factors that influence the differentiation trajectory for numerous cell types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.