Abstract

Carboxylesterases are enzymes present in neural and other tissues that are sensitive to organophosphorus compounds. The esterase activity in particulate forms, resistant to paraoxon and sensitive to mipafox have been implicated in the initiation of organophosphorus-induced delayed polyneuropathy (OPIDP) and is called neuropathy target esterase (P-NTE). Certain esterases inhibitors such as phenylmethylsulfonyl fluoride (PMSF), can also irreversibly inhibit P-NTE and by this mechanism PMSF ‘protects’ from further effect of neuropathic OPs. However, if PMSF is dosed after a low non-neuropathic dose of a neuropathic OP, its neurotoxicity is ‘promoted’, causing severe neuropathy. The molecular target of promotion has not yet been identified and it has been shown that it is unlikely to be the P-NTE. In order to discriminate the different esterases, we used non-neuropathic (paraoxon), and neurophatic organophosphorus compounds (mipafox, DFP) and a neuropathy promoter (PMSF). They were used alone or in concurrent inhibition to study particulate and soluble fractions of brain, spinal cord and sciatic nerve of chicken. From the experimental data, a matrix was constructed and equations deduced to estimate the proportions of the different potential activity fractions that can be discriminated by their sensitivity to the tested inhibitors. It was deduced that only combinations of up to three inhibitors can be used for the analysis with consistent results. In all tissues, inside the paraoxon sensitive activity, most of the activity was sensitive either to mipafox, to PMSF or both. In all fractions, except brain soluble fractions, within the paraoxon resistant activity, a mipafox sensitive component was detected that is operationally considered NTE (P-NTE and S-NTE in particulate and soluble fractions, respectively). Most of this activity was also sensitive to PMSF, and this should be considered the target of organophosphorus inducing neuropathy and of PMSF protective effect. Either in brain and spinal cord, a significant amount of the activity resistant to 40 μM paraoxon and 250 μM mipafox (usually called ‘C’ activity) is sensitive to PMSF. It could be a good candidate to contain the target of the promotion effect of PMSF as well as the S-NTE activity that is also PMSF sensitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.