Abstract

In order to realize the accurate judgment of the ground fault and improve the fault discrimination effect, this paper proposes a low-current ground fault discrimination method for the primary and secondary fusion complete sets of equipment under the calculation of three-phase asymmetric harmonic power flow. The three-phase asymmetric harmonic power flow calculation is carried out, the ground fault line selection model is constructed according to the calculation results, and the faulted line is obtained by the zero-sequence active component method and the zero-sequence reactive power component method; the wavelet packet transform method is used to extract the transient zero-sequence power direction, and use it as a line selection criterion to identify whether a ground fault occurs. The amplitude characteristic enhancement value of each section is obtained by calculation. According to the distribution characteristics of the zero-sequence current amplitude of the faulted feeder, the corresponding section is selected as the fault section, and the mutation logic array is used in the determined fault section to realize the low-current grounding fault judgment. The experimental results show that the method has high judgment accuracy in practical application, and the highest value is 98.5 %, which indicates that the method can accurately judge the fault line and determine whether ground fault occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.