Abstract
An algorithm for the discrimination between human upstairs and downstairs using a tri-axial accelerometer is presented in this paper, which consists of vertical acceleration calibration, extraction of two kinds of features (Interquartile Range and Wavelet Energy), effective feature subset selection with the wrapper approach, and SVM classification. The proposed algorithm can recognize upstairs and downstairs with 95.64% average accuracy for different sensor locations, i.e. located on the subject's waist belt, in the trousers pocket, and in the shirt pocket. Even for the mixed data from all sensor locations, the average recognition accuracy can reach 94.84%. Experimental results have successfully validated the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.