Abstract
To develop and validate a deep learning model to discriminate transient from persistent subsolid nodules (SSNs) on baseline CT. A cohort of 1414 SSNs, consisting of 319 transient SSNs in 168 individuals and 1095 persistent SSNs in 816 individuals, were identified on chest CT. The cohort was assigned by examination date into a development set of 996 SSNs, a tuning set of 212 SSNs, and a validation set of 206 SSNs. Our model was built by transfer learning, which was transferred from a well-performed deep learning model for pulmonary nodule classification. The performance of the model was compared with that of two experienced radiologists. Each nodule was categorized by Lung CT Screening Reporting and Data System (Lung-RADS) to further evaluate the performance and the potential clinical benefit of the model. Two methods were employed to visualize the learned features. Our model achieved an AUC of 0.926 on the validation set with an accuracy of 0.859, a sensitivity of 0.863, and a specificity of 0.858, and outperformed the radiologists. The model performed the best among Lung-RADS 2 nodules and maintained well performance among Lung-RADS 4 nodules. Feature visualization demonstrated the model's effectiveness in extracting features from images. The transfer learning model presented good performance on the discrimination between transient and persistent SSNs. A reliable diagnosis on nodule persistence can be achieved at baseline CT; thus, an early diagnosis as well as better patient care is available. • Deep learning can be used for the discrimination between transient and persistent subsolid nodules. • A transfer learning model can achieve good performance when it is transferred from a model with a similar task. • With the assistance of deep learning model, a reliable diagnosis on nodule persistence can be achieved at baseline CT, which can bring a better patient care strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.