Abstract

ObjectiveIn this study we aim to show that an optical fiber Bragg grating-based microindentation system, which has the potential to be deployed arthroscopically, can differentiate between healthy and degenerated articular cartilage, which represents an important challenge in minimally-invasive surgery. DesignTwenty bovine osteochondral cylinders, extracted from the patellar groove of ten 24 months old animals were subjected to stepwise in vitro stress-relaxation indentation measurements. The indentation procedure comprised 15 indentation steps of 20 μm each, reaching a total depth of 300 μm. Ten samples remained untreated and served as a control group for healthy cartilage. A second group of ten samples was treated for 12 h with an aqueous trypsin solution (concentration 2.5%) to deplete the proteoglycans. For both groups and all indentation depths deeper than 100 μm, the step response functions of a two elements Maxwell-Wiechert model fitted well to the measured relaxation curves. ResultsThe standard deviations of the identified stiffness parameters within each group were much smaller than the difference of the average stiffness values between both groups. Based on the measured stiffness values, the system was capable to discriminate between healthy and degenerated cartilage with a high level of significance (p < 0.001). The experimental results are also discussed in terms of the biomechanical changes of cartilage under the action of trypsin. ConclusionThe fiber Bragg grating microindentation system showed the capability to differentiate intact and proteoglycan depleted cartilage with high significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.