Abstract

As a natural product, honey has been prone to adulteration. Adulteration of honey by substituting with cheap invert sugars is a critical issue in the honey industry. Fourier Transform (FT) Raman Spectroscopy was used to detect adulterants such as cane and beet invert in honey. FT Ra man spectrum of adulterated samples were characterized and the region between 200 and 1600 cm−1 (representing carbohydrates and amino acid fractions) was used for quantitative and discriminant analysis. Partial least squares, and principal component regression analysis were used for quantitative analysis while linear discriminant analysis and canonical variate analysis (CVA) were used for discriminant analysis. FT-Raman spectroscopy was efficient in predicting beet and cane invert adulterants (R2>0.91) in all three floral types of honey considered. Classification of adulterants in honey using CVA gave a minimum classification accuracy of about 96%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call