Abstract
The traceability of a Chinese white lotus seed (WLS) with Protected Designation of Origin (PDO) was investigated using near-infrared (NIR) spectroscopy and chemometrics. Three chemometrics methods, discrimination analysis (DA), class modeling, and a newly proposed strategy, the fusion of DA and class modeling, were investigated to compare their capacity to trace the geographical origins of WLS. Least squares support vector machine (LS-SVM) was developed to distinguish the PDO WLS from non-PDO WLS of four main producing areas. A class modeling technique, one-class partial least squares (OCPLS), was developed only using the data of PDO WLS. By the fusion of LS-SVM and OCPLS, the best prediction sensitivity and specificity were 0.900 and 0.973, respectively. The results indicate that fusion of DA and class modeling can enhance the specificity for detection of non-PDO products. The conclusion is that DA and class modeling should be combined for tracing food geographical origins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.