Abstract

New technique based on continuous wavelet transform (CWT) for classifying objects in synthetic aperture radar (SAR) imaging is presented. The CWT allows to analyse two-dimensional SAR images to highlight the frequency and angular behaviour of the scatterers ref. 10, 11. This technique allows to build a SAR hyperimage, that is, a four-dimensional data cube which represents for each spatial location (x, y) of the scatterer in the image, its frequency and angular energy behaviour. When analysing different targets, objects or areas in SAR images, it has been recently observed that some scatterers belonging to a same class of objects could have similar frequency and angular energy responses. The previous observations have motivated the determination to exploit these energy responses to discriminate these objects. This discrimination is performed by frequency and angular correlations between the response of a particular scatterer (measured) and those of all the scatterers in the SAR image. Some examples of discrimination from real SAR data are presented and show an interest of the method for target classification and recognition for SAR imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.