Abstract

To develop an easy-to-use nomogram for discrimination of malignant thyroid nodules and to compare diagnostic efficiency with the Kwak and American College of Radiology (ACR) Thyroid Imaging, Reporting and Data System (TI-RADS). Retrospective diagnostic study. The Second Hospital of Shandong University. From March 2017 to April 2019, 792 patients with 1940 thyroid nodules were included into the training set; from May 2019 to December 2019, 174 patients with 389 nodules were included into the validation set. Multivariable logistic regression model was used to develop a nomogram for discriminating malignant nodules. To compare the diagnostic performance of the nomogram with the Kwak and ACR TI-RADS, the area under the receiver operating characteristic curve, sensitivity, specificity, and positive and negative predictive values were calculated. The nomogram consisted of 7 factors: composition, orientation, echogenicity, border, margin, extrathyroidal extension, and calcification. In the training set, for all nodules, the area under the curve (AUC) for the nomogram was 0.844, which was higher than the Kwak TI-RADS (0.826, P = .008) and the ACR TI-RADS (0.810, P < .001). For the 822 nodules >1 cm, the AUC of the nomogram was 0.891, which was higher than the Kwak TI-RADS (0.852, P < .001) and the ACR TI-RADS (0.853, P < .001). In the validation set, the AUC of the nomogram was also higher than the Kwak and ACR TI-RADS (P < .05), each in the whole series and separately for nodules >1 or ≤1 cm. When compared with the Kwak and ACR TI-RADS, the nomogram had a better performance in discriminating malignant thyroid nodules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call