Abstract

BackgroundChinese medicinal herbs may use more than one species of Curcumae Radix (Yujin) is the tuberous roots of Curcumae wenyujin, C. kwangsiensis, C. phaeocaulis and C. longa. This study aimed to characterize the chemical profiles of these different species of Curcumae Radix, and develop a method for rapid discrimination of these species by ultra-high performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOFMS) combined with multivariate statistical analysis.MethodsThe metabolomes of 33 different batches of Curcumae Radix derived from four Curcumae species were profiled by UHPLC/Q-TOFMS. The resulting sample codes, tR–m/z pairs and ion intensities were processed by unsupervised principal component analysis (PCA) and supervised orthogonal partial least squared discriminant analysis (OPLS-DA) to characterize the chemical composition of Curcumae Radix across the four different species.ResultsObvious differences were observed in the chemical compositions of the Curcumae Radix samples derived from the four different species according to PCA and OPLS-DA. These results suggested that curcumin, curcumenone, curcumenol and zederone could be used as unique chemical markers for C. longa, C. wenyujin, C. phaeocaulis and C. kwangsiensis, respectively.ConclusionsThis study developed a UHPLC/Q-TOFMS method coupled with multivariate statistical analysis to discriminate between Curcumae Radix samples from four different Curcumae species, i.e., C. longa, C. wenyujin, C. phaeocaulis and C. kwangsiensis. Notably, this new approach resulted in the identification of curcumin (a), curcumenone (b), curcumenol (c) and zederone (d) as unique chemical markers for the identification.Electronic supplementary materialThe online version of this article (doi:10.1186/s13020-016-0095-8) contains supplementary material, which is available to authorized users.

Highlights

  • Chinese medicinal herbs may use more than one species of Curcumae Radix (Yujin) is the tuberous roots of Curcumae wenyujin, C. kwangsiensis, C. phaeocaulis and C. longa

  • Several analytical methods, including liquid chromatographymass spectrometry (LC-MS) [11, 12], high-performance liquid chromatography (HPLC) [13, 14], gas chromatography-mass spectrometry (GC-MS) [15, 16], thin layer chromatography (TLC) [17] and capillary electrophoresis (CE) [18], have been developed to discriminate among the different species of Curcuma based on the chemical diversity of several main ingredients, sesquiterpenoids

  • The aim of this study was to characterize the chemical profiles of Curcumae Radix and develop a rapid method to discriminate between the species by ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOFMS) combined with multivariate statistical analysis

Read more

Summary

Introduction

Chinese medicinal herbs may use more than one species of Curcumae Radix (Yujin) is the tuberous roots of Curcumae wenyujin, C. kwangsiensis, C. phaeocaulis and C. longa. Liu et al Chin Med (2016) 11:21 from the dried tuberous roots of four Curcuma species, including Curcuma wenyujin, C. kwangsiensis, C. phaeocaulis and C. longa, as officially described in the Chinese Pharmacopoeia [10]. Several analytical methods, including liquid chromatographymass spectrometry (LC-MS) [11, 12], high-performance liquid chromatography (HPLC) [13, 14], gas chromatography-mass spectrometry (GC-MS) [15, 16], thin layer chromatography (TLC) [17] and capillary electrophoresis (CE) [18], have been developed to discriminate among the different species of Curcuma based on the chemical diversity of several main ingredients, sesquiterpenoids. Furanodiene degrades to curzerene via a [3,3]-sigmatropic reaction (Cope rearrangement) upon heat treatment [25], whereas (4S, 5S)-germacrone-4,5-epoxide cyclizes through a transannular reaction on exposure to heat [26]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.