Abstract
People can make highly photorealistic images using rendering technology of computer graphics. It is difficult to human eye to distinguish these images from real photo images. If an image is photorealistic graphics, it is highly possible that the content of the image was made up by human and the reliability of it becomes low. This research field belongs to passive-blind image authentication. Identifying computer graphics images is an important problem in image classification, too. In this paper, we propose using HMT(hidden Markov tree) to classifying natural images and computer graphics images. A set of features are derived from HMT model parameters and its effect is verified by experiment. The average accuracy is up to 84.6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.