Abstract

An expanding body of literature suggests Raman spectroscopy is a promising tool for skin cancer diagnosis and in-vivo tumor border demarcation. The development of an in-vivo diagnostic tool is, however, hampered by the fact that construction of fiber optic probes suitable for Raman spectroscopy in the so-called fingerprint region is complicated. In contrast, the use of the high wave-number region allows for fiber optic probes with a very simple design. We investigate whether high wave-number Raman spectroscopy (2800 to 3125 cm(-1)) is able to provide sufficient information for noninvasive discrimination between basal cell carcinoma (BCC) and noninvolved skin. Using a simple fiber optic probe, Raman spectra are obtained from 19 BCC biopsy specimens and 9 biopsy specimens of perilesional skin. A linear discriminant analysis (LDA)-based tissue classification model is developed, which discriminates between BCC and noninvolved skin with high accuracy. This is a crucial step in the development of clinical dermatological applications based on fiber optic Raman spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.