Abstract

Membrane bioreactors (MBRs) are a well-established filtration technology that has become a popular solution for treating wastewater. One of the drawbacks of MBRs, however, is the formation of biofilm on the surface of membrane modules. The occurrence of biofilms leads to biofouling, which eventually compromises water quality and damages the membranes. To prevent this, it is vital to understand the mechanism of biofilm formation on membrane surfaces. In this pilot-scale study, a novel reciprocation membrane bioreactor was operated for a period of 8 months and fed with domestic wastewater from an aerobic tank of a local WWTP. Water quality parameters were monitored and the microbial composition of the attached biofilm and suspended aggregates was evaluated in this reciprocating MBR configuration. The abundance of nitrifiers and composition of microbial communities from biofilm and suspended solids samples were investigated using qPCR and high throughput 16S amplicon sequencing. Removal efficiencies of 29%, 16%, and 15% of chemical oxygen demand, total phosphorus and total nitrogen from the influent were observed after the MBR process with average effluent concentrations of 16 mg/L, 4.6 mg/L, and 5.8 mg/L respectively. This suggests that the energy-efficient MBR, apart from reducing the total energy consumption, was able to maintain effluent concentrations that are within regulatory standards for discharge. Molecular analysis showed the presence of amoA Bacteria and 16S Nitrospira genes with the occurrence of nitrification. Candidatus Accumulibacter, a genus with organisms that can accumulate phosphorus, was found to be present in both groups which explains why phosphorus removal was observed in the system. High-throughput 16S rRNA amplicon sequencing revealed the genus Saprospira to be the most abundant species from the total OTUs of both the membrane tank and biofilm samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.