Abstract

Tin doped indium oxide (ITO) films have generated tremendous research interest and received widespread applications in optoelectronic devices due to a good combination of desired optical and electrical properties. Their electrical properties vary depending on the crystallinity of the film. A good quality ITO film should have low resistivity, which can be achieved with highly crystalline films deposited at very high temperature. Thus, film quality is sensitive to the deposition conditions. Generally, low-temperature deposition of ITO results in poor quality films due to amorphous growth. In this study, we have demonstrated that crystallinity of the ITO films can be improved even at room temperature (RT) using self-assembled monolayers (SAMs) modified glass substrates. The present study demonstrates that SAM with -SH terminal group is necessary for the high-quality ITO growth, while SAMs with other terminal groups (-NH(2) and -CH(3)) generate ITO films with moderate crystallinity. Various properties of such films were investigated using X-ray diffraction, X-ray photoelectron depth profile, four-point probe, and Hall measurements. It is confirmed from such measurements that ITO film deposited on -SH terminated SAM substrate has excellent crystallinity, conductivity, and optical transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call