Abstract
Identifying characteristic extracellular matrix (ECM) variants is a key challenge in mechanistic biology, bioengineering, and medical diagnostics. The reported study demonstrates the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to detect subtle differences between human mesenchymal stromal cell (MSC)-secreted ECM types as induced by exogenous stimulation or emerging pathology. ToF-SIMS spectra of decellularized ECM samples are evaluated by discriminant principal component analysis (DPCA), an advanced multivariate analysis technique, to decipher characteristic compositional features. To establish the approach, signatures of major ECM proteins are determined from samples of pre-defined mixtures. Based on that, sets of ECM variants produced by MSCs in vitro are analyzed. Differences in the content of collagen, fibronectin, and laminin in the ECM resulting from the combined supplementation of MSC cultures with polymers that induce macromolecular crowding and with ascorbic acid are detected from the DPCA of ToF-SIMS spectra. The results are verified by immunostaining. Finally, the comparative ToF-SIMS analysis of ECM produced by MSCs of healthy donors and patients suffering from myelodysplastic syndrome display the potential of the novel methodology to reveal disease-associated alterations of the ECM composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.