Abstract
We define an invariant of torsors under adjoint linear algebraic groups of type C_n-equivalently, central simple algebras of degree 2n with symplectic involution-for n divisible by 4 that takes values in H^3(F, mu_2). The invariant is distinct from the few known examples of cohomological invariants of torsors under adjoint groups. We also prove that the invariant detects whether a central simple algebra of degree 8 with symplectic involution can be decomposed as a tensor product of quaternion algebras with involution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.