Abstract
Face recognition is a multidisciplinary field that involves subjects in neuroscience, computer science and statistical learning. Some recent research in neuroscience has indicated that the ability of our memory relies on the capability of orthogonalizing (pattern separation) and completing (pattern prototyping) partial patterns in order to encode, store and recall information. From a computational viewpoint, pattern separation can be cast in the subspace learning area while pattern prototyping is closer to manifold learning methods. So, subspace (or manifold) learning techniques have a close biological inspiration and reasonability in terms of computational methods to possibly exploring and understanding the human behavior of recognizing faces. Therefore, the aim of this paper is threefold. Firstly, we review some theoretical aspects about perceptual and cognitive processes related to the mechanisms of pattern separation and pattern prototyping. Then, the paper presents the basic idea of manifold learning and its relationship with subspace learning with focus on the dimensionality reduction problem. Finally, we present the Discriminant Principal Component Analysis (DPCA) and the Self-Organized Manifold Mapping (SOMM) algorithm to exemplify respectively pattern separation and completion techniques. We show experimental results to demonstrate the effectiveness of DPCA and SOMM algorithms on well-framed face image analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.