Abstract
This paper presents an occlusion robust image representation method and apply it to face recognition. Inspired from the recent work [15], we propose a Gabor phase difference representation for occlusion robust face recognition. Based on the good ability of Gabor filters to capture image structure and the robustness to image occlusion shown in this paper, Gabor phase features are expected to be discriminative and robust for face representation in occlusion case. Besides, we adopt spectral regression based discriminant analysis with the extracted Gabor phase features to find the most discriminant subspace to classify different faces. In this way, an occlusion robust face image discriminant subspace is derived. Extensive experiments with various occlusion cases show the efficacy of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.