Abstract

We consider the problem of classifying a p× 1 observation into one of two multivariate normal populations when the training samples contain a block of missing observations. A new classification procedure is proposed which is a linear combination of two discriminant functions, one based on the complete samples and the other on the incomplete samples. The new discriminant function is easy to use. We consider the estimation of error rate of the linear combination classification procedure by using the leave-one-out estimation and bootstrap estimation. A Monte Carlo study is conducted to evaluate the error rate and the estimation of it. A numerical example is given tof illustrate its use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.