Abstract

Ultrasound imaging is widely used for breast lesion differentiation. In this paper we propose a neural transfer learning method for breast lesion classification in ultrasound. As reported in several papers, the content and the style of a particular image can be separated with a convolutional neural network. The style, coded by the Gram matrix, can be used to perform neural transfer of artistic style. In this paper we extract the neural style representations of malignant and benign breast lesions using the VGG19 neural network. Next, the Fisher discriminant analysis is used to separate those neural style representations and perform classification. The proposed approach achieves good classification performance (AUC of 0.847). Our method is compared with another transfer learning technique based on extracting pooling layer features (AUC of 0.826). Moreover, we apply the Fisher discriminant analysis to differentiate breast lesions using ultrasound images (AUC of 0.758). Additionally, we extract the eigenimages related to malignant and benign breast lesions and show that these eigenimages present features commonly associated with lesion type, such as contour attributes or shadowing. The proposed techniques may be useful for the researchers interested in ultrasound breast lesion characterization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.