Abstract

In this first part of a two-paper sequence, we develop a Gabor-based Gaussian beam (GB) method for the representation of three-dimensional (3-D) time-harmonic vector electromagnetic fields excited by two-dimensional (2-D) truncated arbitrarily polarized planar aperture field distributions. The biorthogonal Gabor basis is tied to a lattice in the discretized four-dimensional (4-D) [configuration (space)]-[spectrum (wavenumber)] phase space which spans the 2-D aperture plane. This study generalizes previous investigations of the simpler corresponding procedure for 2-D fields excited by one-dimensional (1-D) apertures. By subsequent specialization, in the 1-D aperture case, to narrow-waisted 2-D ray-like GBs, we have shown that tracking such beams through interactions with complex environments and recombining them to synthesize the total 2-D field produces robust, efficient and accurate algorithms that are useful for a variety of forward and inverse scattering scenarios. Extension to the time domain via narrow-waisted pulsed GBs has likewise been considered. These potential applications have motivated the extension here to general 3-D EM fields excited by time-harmonic 2-D truncated apertures. The presentation relates each step in the analytic development to a corresponding step in the 1-D aperture case, thereby highlighting the complications (in the parameterizing phase space) associated with the 2-D aperture problem. The outcome is the formal exact solution of the problem under consideration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call