Abstract
We study a transcritical singularity in a fast-slow system given by the explicit Euler discretization of the corresponding continuous-time normal form. The analysis uses the blow-up method and direct trajectory-based estimates. We prove that the qualitative behaviour is preserved by a time-discretization with sufficiently small step size. This step size is fully quantified relative to the time scale separation. Our proof also yields the continuous-time results as a special case and provides more detailed calculations in the classical (or scaling) chart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.