Abstract
The continuous berth allocation and quay crane assignment problem considers the size of berths and ships, the number of quay cranes, the dynamic ships and non-crossing constraints of quay cranes. In this work, a mixed-integer linear programming model of this problem is established, aiming at minimizing the total stay time and delay penalty of ships. To solve the model, the continuous berth is separated into discrete segments via a proposed discretization strategy. Thereafter, a large neighborhood search algorithm composed of the random removal operator and relaxed sorting-based insertion operator and a backtracking comparison-based constraint repair strategy are proposed. The effectiveness of the model and algorithm presented is verified via real-life instances with different characteristics, and the performances of different combinations of removal operators and insertion operators in the large neighborhood search algorithmic framework are analyzed. Numerical results show that the large neighborhood search algorithm can optimally solve the small-scale instances in a reasonable time. Meanwhile, the results of large-scale instances show that the large neighborhood search algorithm incorporating the discretization strategy is more efficient than other genetic algorithms based on continuous optimization. With the proposed approach, high-quality berth and quay crane allocation results can be obtained efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.