Abstract
The Luneburg lens is widely applied in both the optical and microwave regimes because it offers high gain and a wide beam-scanning range. However, Luneburg lens typically suffer from low efficiency which is caused by the dielectric loss of medium employed. To address this issue, we propose herein a general method for discretization of two-dimensional Luneburg lens based on correctional effective-medium theory. In discrete Luneburg, the efficiency is not dependent on the employed medium roughly because that the main component in the lens is air, resulting into a significant improvement of efficiency. Subsequently, a systemic study of lens discretization is presented, which is validated by a discrete Luneburg lens easily fabricated by using 3D printing. In addition, a novel wave-patch reduction feature allows the discrete lens to function as well. This work presents a fundamental theory for lens discretization, which is valid not only for the Luneburg lens but also for other types of lenses. It can be applied in imaging, antennas, or phase manipulation in both the optical and microwave bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.