Abstract
We consider a stochastic partial differential equation with additive noise satisfying a strong dissipativity condition for the nonlinear term such that this equation has a random fixed point. The goal of this article is to approximate this fixed point by space and space-time discretizations of a stochastic differential equation or more precisely, a conjugate random partial differential equation. For these discretizations external schemes are used. We show the convergence of the random fixed points of the space and space-time discretizations to the random fixed point of the original partial differential equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.