Abstract

Application of the finite-volume method in one dimension for open channel flow predictions mandates the direct discretization of integral equations for mass conservation and momentum balance. The integral equations include source terms that account for the forces due to changes in bed elevation and channel width, and an exact expression for these source term integrals is presented for the case of a trapezoidal channel cross section whereby the bed elevation, bottom width, and inverse side slope are defined at cell faces and assumed to vary linearly and uniformly within each cell, consistent with a second-order accurate solution. The expressions may be used in the context of any second-order accurate finite-volume scheme with channel properties defined at cell faces, and it is used here in the context of the Monotone Upwind Scheme for Conservation Laws (MUSCL)-Hancock scheme which has been adopted by many researchers. Using these source term expressions, the MUSCL-Hancock scheme is shown to preserve stationarity, accurately converge to the steady state in a frictionless flow test problem, and perform well in field applications without the need for upwinding procedures previously reported in the literature. For most applications, an approximate, point-wise treatment of the bed slope and nonprismatic source terms can be used instead of the exact expression and, in contrast to reports on other finite-volume-based schemes, will not cause unphysical oscillations in the solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call