Abstract
Numeric approximations to the solutions of asymptotically stable homogeneous systems by Euler method, with a step of discretization scaled by the state norm, are investigated (for the explicit and implicit integration schemes). It is proven that for a sufficiently small discretization step the convergence of the approximating solutions to zero can be guaranteed globally in a finite or a fixed time depending on the degree of homogeneity of the system, but in an infinite number of discretization iterations. The maximal admissible step can be estimated by analyzing the system properties on the sphere. It is shown that the absolute and relative errors of the discretizations are globally bounded functions, thus the approximations approaching the solutions with the step converging to zero. In addition, it is established that the proposed discretization approach preserves robustness with respect to exogenous perturbations. Efficiency of the designed discretization algorithms is demonstrated in simulations.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.