Abstract

The existence of numerical attractors for lattice dynamical systems is established, where the implicit Euler scheme is used for time discretisation. Infinite dimensional discrete lattice systems as well as their finite dimensional truncations are considered. It is shown that the finite dimensional numerical attractors converge upper semicontinuously to the global attractor of the original lattice model as the discretisation step size tends to zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.