Abstract

Neural networks are effective function approximators, but hard to train in the reinforcement learning (RL) context mainly because samples are correlated. In complex problems, a neural RL approach is often able to learn a better solution than tabular RL, but generally takes longer. This paper proposes two methods, Discrete-to-Deep Supervised Policy Learning (D2D-SPL) and Discrete-to-Deep Supervised Q-value Learning (D2D-SQL), whose objective is to acquire the generalisability of a neural network at a cost nearer to that of a tabular method. Both methods combine RL and supervised learning (SL) and are based on the idea that a fast-learning tabular method can generate off-policy data to accelerate learning in neural RL. D2D-SPL uses the data to train a classifier which is then used as a controller for the RL problem. D2D-SQL uses the data to initialise a neural network which is then allowed to continue learning using another RL method. We demonstrate the viability of our algorithms with Cartpole, Lunar Lander and an aircraft manoeuvring problem, three continuous-space environments with low-dimensional state variables. Both methods learn at least 38% faster than baseline methods and yield policies that outperform them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.