Abstract

This study investigates the rotor speed estimation problem for induction motor drives. The authors propose the design of a scheme based on a discrete-time sliding mode observer which provides the rotor speed estimative. A new algorithm for discrete-time rotor speed estimation is developed and analysed. The conditions for the existence of a discrete-time sliding switching hyperplane are analysed. Moreover, conventional algorithms aiming at the chattering reduction and high-frequency switching on discrete-time implementation are discussed for use with the proposed technique. The stability analysis and parameter convergence of the proposed method are investigated for discrete-time solution. The algorithms developed are tested by experimental results based on fixed-point digital signal processor (DSP) platform (TMS320F2812). Therefore the results demonstrate the good performance of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.