Abstract

This work is devoted to asymptotic properties of singularly perturbed Markov chains in discrete time. The motivation stems from applications in discrete-time control and optimization problems, manufacturing and production planning, stochastic networks, and communication systems, in which finite-state Markov chains are used to model large-scale and complex systems. To reduce the complexity of the underlying system, the states in each recurrent class are aggregated into a single state. Although the aggregated process may not be Markovian, its continuous-time interpolation converges to a continuous-time Markov chain whose generator is a function determined by the invariant measures of the recurrent states. Sequences of occupation measures are defined. A mean square estimate on a sequence of unscaled occupation measures is obtained. Furthermore, it is proved that a suitably scaled sequence of occupation measures converges to a switching diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.