Abstract

In this paper, a discrete-time optimal control scheme is developed via a novel local policy iteration adaptive dynamic programming algorithm. In the discrete-time local policy iteration algorithm, the iterative value function and iterative control law can be updated in a subset of the state space, where the computational burden is relaxed compared with the traditional policy iteration algorithm. Convergence properties of the local policy iteration algorithm are presented to show that the iterative value function is monotonically nonincreasing and converges to the optimum under some mild conditions. The admissibility of the iterative control law is proven, which shows that the control system can be stabilized under any of the iterative control laws, even if the iterative control law is updated in a subset of the state space. Finally, two simulation examples are given to illustrate the performance of the developed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.