Abstract
In this work, a shape memory alloy(SMA) actuator based joint (smart joint) is controlled using a discrete-time integral sliding mode (DISM) control to guide the motion of an active catheter. Controller is designed on the base of a simplified physical model of a single SMA actuator which eliminates the necessity of obtaining an accurate model. SMAs are nonlinear actuators and for this reason, a disturbance observer (DOB) is integrated in to the controller to compensate the model uncertainties and external disturbances to the system. A linearized model is used to design the controller. Bandwidth of SMA actuator is small (response frequency is less than 0.1Hz) and hardware communication frequency is 20Hz. Due to high sampling time (τ= 50ms) it is idealized to design a discrete-time controller, as switching frequency of the controller variable is then limited by τ−1. An experimental setup is designed to test the proposed controller with position feedback. In experimental results, DISM controller with DOB is shown to be robust against system model uncertainties and external disturbances. Different frequency responses are compared and it is shown that the response of 0.04 Hz can be achieved with rms tracking error of 0.0112 radians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.