Abstract

To further study the application of waveform relaxation methods in fluid dynamics in actual computation, this paper provides a general theoretical analysis of discrete-time waveform relaxation methods for solving linear DAEs. A class of discrete-time waveform relaxation methods, named discrete-time accelerated block successive overrelaxation (DABSOR) methods, is proposed for solving linear DAEs derived from discretizing time-dependent Stokes equations in space by using “Method of Lines”. The analysis of convergence property and optimality of the DABSOR method are presented in detail. The theoretical results and the efficiency of the DABSOR method are verified by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.