Abstract
Biologically inspired dry adhesion has recently become a research hot topic because of its practical significance in scientific research and instrumental technology. Yet, most of the current studies merely focus on borrowing the concept from some finer biological contact elements but lose sight of the foundation ones that play an equally important role in the adhesion functionality. Inspired by the bending behavior of the flexible foundation element of a gecko (lamellar skin) in attachment motion, in this study, a new type of dry adhesive structure was proposed, wherein a mushroom-shaped micropillar array behaving as a strongly adhesive layer was engineered on a discretely supported thin film. We experimentally observed and analytically modeled the structural deformation and found that the energy penalty could be largely reduced because of the partial shift from pillar bending to film bending. Such behavior is very analogous in functionality to the lamellar skin in a gecko's pads and is helpful in effectively limiting the damage of the contact interface, thus generating enhanced adhesion even on a rough surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.