Abstract

This paper develops an eigenfunction expansion approach to solve discretely monitored first passage time problems for a rich class of Markov processes, including diffusions and subordinate diffusions with jumps, whose transition or Feynman–Kac semigroups possess eigenfunction expansions in $L^{2}$ -spaces. Many processes important in finance are in this class, including OU, CIR, (JD)CEV diffusions and their subordinate versions with jumps. The method represents the solution to a discretely monitored first passage problem in the form of an eigenfunction expansion with expansion coefficients satisfying an explicitly given recursion. A range of financial applications is given, drawn from across equity, credit, commodity, and interest rate markets. Numerical examples demonstrate that even in the case of frequent barrier monitoring, such as daily, approximating discrete first passage time problems with continuous solutions may result in unacceptably large errors in financial applications. This highlights the relevance of the method to financial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call