Abstract

Iron ore sintering process is the secondary most energy consuming procedure in steel making industry. In this study, a discrete wavelet transfer based back-propagation neural network (BPNN) model is built to predict the carbon efficiency of an iron ore sintering process. The raw-material variables and manipulated variables are chosen to be the inputs of the predictive model. First, the input variables are decomposed into 5 components. Then, BPNN models of each component are built. Finally, the prediction results are obtained by adding the output from each wave series. Actual run data are collected to verify the validity of the predictive model. The results show the validity of the proposed method with a MSE of 0.7708, a MAPE of 0.0125, and a <span class="bold">R</span>2 of 0.7016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.